
Learning to Capture a Film-Look Video with a Camera Drone

Chong Huang1, Zhenyu Yang1, Yan Kong1, Peng Chen2, Xin Yang3, and Kwang-Ting (Tim) Cheng4

Abstract— The development of intelligent drones has simpli-
fied aerial filming and provided smarter assistant tools for users
to capture a film-look footage. Existing methods of autonomous
aerial filming either specify predefined camera movements for a
drone to capture a footage, or employ heuristic approaches for
camera motion planning. However, both predefined movements
and heuristically planned motions are hardly able to provide
cinematic footages for various dynamic scenarios. In this paper,
we propose a data-driven learning-based approach, which can
imitate a professional cameraman’s intention for capturing a
film-look aerial footage of a single subject in real-time. We
model the decision-making process of the cameraman with two
steps: 1) we train a network to predict the future image com-
position and camera position, and 2) our system then generates
control commands to achieve the desired shot framing. At the
system level, we deploy our algorithm on the limited resources
of a drone and demonstrate the feasibility of running automatic
filming onboard in real-time. Our experiments show how our
data-driven planning approach achieves film-look footages and
successfully mimics the work of a professional cameraman.

I. INTRODUCTION

One of the most common goals for drone enthusiasts is
to capture film-like videos via drones. The development of
intelligent drones makes it more convenient and efficient to
capture high-quality footage, such as the footage complying
with a predefined image composition (e.g. image center)
and/or following predefined camera movement (e.g. circling).
However, these heuristic settings provide few filming styles
and cannot always satisfy the user’s expectation. Therefore,
we expect the drone to be more intelligent to learn filming
skills and improvise cinematic videos.

Watching a large number of video clips captured by
professional filmmakers is an effective way for beginners to
learn video shooting skills and ultimately derive their own
creative works. Such a “watching - learning - imitating”
strategy has been successfully applied to camera planning
in some automated filming tasks and is known as ”imitation
filming”. [1] and [2] learned a recurrent decision tree to
automate basketball game broadcasting with a pan-tilt-zoom
(PTZ) camera. [3] learned an agent for tracking a salient

1Chong Huang, Zhenyu Yang and Yan Kong are with Department of Elec-
trical and Computer Engineering, University of California, Santa Barbara,
Santa Barbara, CA 93106 USA. (chonghuang, zhenyuyang,
yankong@ucsb.edu)

2Peng Chen is with the College of Information and Engineer-
ing, Zhejiang University of Technology, Hangzhou 310023 China.
(chenpeng@zjut.edu.cn)

3Xin Yang is with the School of Electronics Information and Commu-
nications, Huazhong University of Science and Technology, Wuhan, Hubei
430074 China. (xinyang2014@hust.edu.cn)

4Kwang-Ting (Tim) Cheng is with School of Engineering, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong. (timcheng@usk.hk)

object through 360◦ panoramic videos using a recurrent
neural network. These successful applications of imitation
filming benefit from low-degree-of-freedom control outputs
and the manually-labeled data.

Inspired by these works, we aim to extend imitation learn-
ing to the more complex drone system to assist inexperienced
users to capture cinematic footage. However, there exist
several challenges that prohibit direct usage of the existing
data-driven approaches in our task.

1) Hard to provide an objective evaluation metric: The
goal of our task, i.e. cinematic aerial footage, is subjective.
Although [4]–[6] provides several metrics (e.g. lighting,
color and composition) to quantify the aesthetic quality of
the footage, it is still difficult to use these metrics to drive
the drone to capture cinematic videos.

2) Lack of the annotated training data: Imitation learning
requires the video and synchronized camera pose as training
data. Although existing visual-based camera pose estimation
(e.g. ORB-SLAM [7, 8]) can estimate the camera pose
(without the absolute scale), the ambiguous scale makes it
infeasible to feed the camera pose with different scales into
the training network.

In this work, we focus on filming videos containing one
subject, the framing of the filmed subject, including the
image composition and the relative camera position to the
subject, is an important aspect of aesthetic assessment [9].
Based on this intuition, we propose the following techniques
to address the above challenges:

1) We imitate the decision-making process of profes-
sional cameraman using a supervised learning network. The
network learns to predict the next camera movement by
minimizing the difference between the image composition
and camera position generated from the professional videos
and the output from the network.

2) We estimate the relative camera pose to the subject
based on the perspective projection of the subject’s skeleton.
This method makes the scale of the camera pose to be related
only to the height of the subject. Therefore, we can fix the
subject’s height to guarantee the input camera pose with the
same scale.

Our system takes the shot framing given by a user as
input and automatically records the scene as a professional
cameraman. We mount two GPUs (one Manifold [10]
and one TX2 [11]) on a DJI Matrix 100 drone [12] to
achieve real-time computation. In addition, we develop a user
interface (UI) to assist users to conveniently design shots.

In summary, our contributions are three-fold. First, we
introduce imitation learning to drone cinematography, sig-
nificantly enhancing the drone’s intelligence. Second, our



proposed system allows a user to focus on the shot design
and dramatically reduce the needs for drone control. This
simplifies capturing cinematic shots for drone beginners.
Third, we implement the entire system, including skeleton
detection, viewpoint prediction and trajectory planning, and
demonstrate the feasibility of running the system in real-
time on a standard drone platform with limited computation
resources.

We discuss related work in Sec. II, and describe some
preliminary information in Sec. III. We give the problem
definition in Sec. IV. The implementation of training and
testing are presented in Sec. V and Sec. VI, respectively,
followed by the system architecture in Sec. VII. In Sec. VIII,
we present the experimental results to evaluate our system.
Finally, we give the conclusion in Sec. IX.

II. RELATED WORK

Autonomous Aerial Filming: Commercially available
applications are often limited to watching a specified target
from a fixed viewpoint, e.g. ActiveTrack [13], or a fixed
path, e.g., Quickshot [14]. These modes are hardly able to
provide cinematic footage for various dynamic scenarios.

Consequently, several algorithms [15]–[22] regarding
human-drone interaction have been proposed. [15]–[18]
allow users to specify the subject size, viewing angle and
position on the screen to generate quadrotor motion plans
automatically. However, their methods consider the camera
and drone as the same rigid body in the control optimization
and as a result, this model suffers from shaking footage
in flight. The systems in [19]–[21] model a camera on a
gimbal attached to a quadrotor and apply two independent
controllers to guarantee smooth videos. These techniques are
used essentially to move the camera to the closest pose in
terms of the user’s input; therefore, the aesthetic quality of
the video highly relies on the user’s input. Huang et al.
[22] designed an automatic drone filming system without
the user input. This method employs an aesthetic objective–
maximizing the visibility of the subject–to automate aerial
filming in action scenes. But this objective is oversimplified
and is not applicable to many real-world scenarios.

Imitation Filming: Imitation filming is essentially a data-
driven autonomous camera planning. [1] and [2] directly use
the video clips of basketball games to imitate professional
filming for team sports. [3] uses images labeled with the
object’s position for their application of tracking the most
salient object in the 360◦ panoramic video. Our system
aims to capture aesthetic footage for human action, yet
the definition of ”aesthetic” is subjective and ambiguous.
Therefore, it is difficult to formulate the problem without
predefined heuristics.

III. PRELIMINARY

A. Coordinates Definition

We denote (·)w as the world frame, which is initialized
by the drone’s navigation system. (·)c is the camera frame
and (·)v is the image frame, where the origin is the center
of the screen. To describe the relative position between the

Fig. 1. The framework of imitation filming.

subject and the camera, we use the subject’s 3D skeleton
joints to define the subject-oriented coordinate system (·)s.
The subject-oriented coordinate system is updated with the
subject’s movement. More concretely, the origin is the center
of the subject’s 3D skeleton and three axes are defined as
follows:

zs = zw

xs = norm(pwls − pwrs)× zs

ys = zs × xs,
(1)

where pwls and pwrs denote the 3D positions of the subject’s
left shoulder and the right shoulder, respectively in the world
coordinate system, and zw denotes the z-axis of the world
coordinates.

B. Shot Definition

We define the subject’s appearance on the screen as “shot”
[16], which is related to three important aspects: 1) camera-
subject distance, 2) relative viewing angle, and 3) the screen
position of the filmed target. Therefore, we represent the shot
with two features:

s = {pv, T s} ∈ R5, (2)

where T s is the camera’s relative position in the subject-
oriented coordinated system, and pv is the center of the
subject’s 2D projection on the camera screen.

IV. PROBLEM DEFINITION

Our system takes the desired shot sd given by the user
as the input and automatically records the video, where the
evolution of the subject’s appearance over time is close to
professional filming. Considering that aerial filming is a con-
tinuous process, the future camera movement is determined
by not only the current shot st but also the previous shots
{st−K , ..., st−2, st−1}. The set consisting of the current and
previous shots is denoted by s≤t.

Our task is to model the conditional probability of the next
camera movement based on s≤t and sd. Because the camera
pose directly corresponds to how the subject appears on the
screen, we divide the motion prediction into two steps: 1)
predict the next shot se based on the previous shots s≤t and
the desired shot sd, and 2) estimate the next camera pose



Fig. 2. The camera poses (PA, PB and PC ) are estimated from a sequence
of frames (IA, IB and IC ). The estimated camera positions are represented
in the subject-oriented coordinate system.

based on the predicted shot. Finally, the next camera pose
will be published to the flight control to guide the drone.

In the following, we introduce the imitation filming
method in terms of training phase and testing phase.

V. TRAINING

We illustrate the training part of our method in Fig. 1(top).
First, we extract the shot features from the collected profes-
sional videos. Second, we use the sliding windows to create
the training data set, where each tuple consists of se, s≤t and
sd. Finally, we use the supervised learning network to train
a prediction model p(se|s≤t, sd).

A. Data Collection

We start by collecting a set of demonstrations for our task.
To obtain continuous video clips with good image compo-
sition and smooth camera movement, we download videos
containing only one person from www.gettyimages.com,
which offers professional photography and videography.
Specifically, we use the keywords ”aerial view, one man
only, sport” to obtain 1,641 videos clips, each of which is
around 15 seconds long. Because some videos are captured in
poor lighting conditions, from a long distance, and/or include
occlusions, which affect the 2D skeleton detection, we feed
these videos to a 2D skeleton detection network based on
OpenPose to remove the videos where the subject cannot
be identified in more than 4/5 of the sequence. Because we
resize the input video by 304x176 pixels to guarantee real-
time computation in the testing phase, we also resize the
training data to achieve the same scale. Finally, we obtain
298 feasible videos, from which 200 videos are randomly
selected as the training set and the remaining videos are test
set.

B. Shot Feature Extraction

In this subsection, we present how to extract the feature
Eq. 2 from the aerial video. We divide feature extraction into
five main steps:

1) We use Openpose [23] to detect the 2D skeleton in the
image. To address incomplete 2D joint estimation caused
by occlusion, we use the value in the previous frame to
compensate the missing space of the current frame. The
center of the 2D skeleton joints is set as pv .

2) We use a seq2seq model [24] to estimate the 3D
skeleton from the 2D skeleton. The estimated 3D skeleton is
without global position information.

3) We follow [25] [26] and use the predefined subject’s
height to estimate the subject’s relative position to the
camera, where the scale of the camera-subject distance is
related to the subject’s height. Considering that the network
requires the input camera pose to maintain the same scale,
we set the height of the subject to be the same in all the
videos. In fact, the height setting has no impact on learning
because the input will be normalized before being fed into
the network. We set the height as 1.8m in training phase.

4) We then transform the subject’s relative position in the
camera coordinate system to the camera’s position T s in the
subject-oriented coordinate system.

5) We normalize the shot feature to balance the scale
between the screen position and the spatial position as
follows:

x̂v = xv/(width/2)

ŷv = yv/(height/2)

x̂s = xs/max(xs)

ŷs = ys/max(ys)

ẑs = zs/max(zs),

(3)

where max(xs),max(ys) and max(zs) are the maximum
distances of the training data in the three respective axes.
The width and height are the pixel-wise width and height
of the input video, respectively. Each video is represented as
a sequence of vectors s = [x̂v, ŷv, x̂s, ŷs, ẑs].

C. Training Data Generation

In this subsection, we introduce how to construct the
training tuples given a sequence of shot features. We utilize
an N -length sliding window to scan the whole sequence. We
select the feature of the first K frames (K will be discussed
in Sec. 5. D) of the window to be s≤t. We set the shot feature
of the (K+1)th frame and the Nth as the next shot se and sd,
respectively. To cover more cases, the length of the sliding
window starts with 20 frames for each scan and increases
until it is the length of the entire video clip. In addition,
we flip each frame of the video horizontally to augment the
training video.

D. Learning Network

In this subsection we describe how to model the condi-
tional probability p(se|s≤t, sd). A natural choice is to use
a neural machine translation (NMT) architecture [27]–[30],
which consists of two components: (a) an encoder, which
computes a hidden state for the source input words, and (b)
a decoder, which generates one target output word given a
target input word. The objective is formulated as follows:

Jθ =
∑

(se,s≤t,sd)∈D

− log p(se|s≤t, sd, θ), (4)

where θ are learned parameters of the encoder and the
decoder, and D are our parallel training corpus.



Fig. 3. The network architecture for imitation filming.

In our application, the encoder and decoder architecture
are based on two long short-term memory (LSTM) networks
[31] with 512 hidden units. This allows the network to learn
when to forget previous hidden states and when to update
hidden states given new information. In addition, we wrap
the LSTM with an attention layer [29, 30] to handle possible
long-length sequences.

The network architecture is illustrated in Fig. 3. The en-
coder receives a sequence of shot features s≤t and produces a
context vector Ct. The decoder is responsible for predicting
the next shot se given the context vector Ct and sd. The
context vector Ct is the linear combination of the previous
K hidden states from the source input and corresponding
attention weights, as follows:

Ct =

K∑
k=0

at−kht−k, (5)

The attention weight ak is derived by comparing the
current hidden state hd from the decoder with each source
hidden state of ht from the encoder:

ak = align(hk, hd)

=
exp(score(hk, hd))∑
k≤t exp(score(hk, hd))

,
(6)

where score is referred to as a parameterized function to
evaluate the similarity between hd and hk. Here we adopt
Luong’s multiplicative style score(hk, hd) = hTdWhk [29].
We analyze the attention weight ak to understand where
the network should focus its attention during decoding.
Fig. 4 illustrates the distribution of the attention weights
when the length of the input sequence is 5. The last hidden
state obtains the highest attention (a4) from the model and
creates a context vector with more than fifty percent weights.
Because the sum of the last four average attention weights
(a1∼4) is more than 90%, it is sufficient to set the length of
the input sequence to five (K = 5).

Given the target hidden state hd and the source-side
context vector Ct, we employ a simple concatenation layer
to combine the information from both vectors to produce a
transition viewpoint as follows:

Fig. 4. The box plot of the 5-steps attention weights of 250 sequences.
The attention weight ak of the last step is the highest and plays the most
important role to create a context vector.

se = tanh(W [Ct;hd]), (7)

Across all the experiments, we use Adamax [32] to
perform the optimization, with a learning rate of 0.0001.

VI. TESTING

In this section, we introduce the implementation of the test
phase (see Fig. 1(bottom)). First, the system extracts shot
features of the input video stream in real-time and collect
the shot features of the latest 5 frames as the buffer s≤t.
Simultaneously, we follow [25] [26] to use the extracted
skeleton and the prior knowledge of the subject’s height to
estimate the subject’s relative position to the camera. Given
the known drone’s positioning information, we can obtain
the position and orientation of the subject in the real world.

Second, we take the framing objective given by the user
as sd, and then feed s≤t and sd into the learned network
(Sec. V. D) to predict the feature of the next shot se.

Finally, we apply the joint quadrotor and camera model
used in [19] [?] to model the gimbal and drone body.
The subject’s screen position pv and the relative camera
position T s in se are used to guide the gimbal and drone
body movement independently. It is noted that the predicted
pv and T s are required to recover their scale based on the
inverse operation of Eq. 3 before further processing.

A. Gimbal Control

We apply the PD controller to adjust the gimbal camera
to place the subject in the predicted screen position pv .

B. Drone Body Control

We adopt min-snap (second derivative of acceleration)
piecewise trajectory planning [33] to guide the drone. The
generated trajectory consists of two-segments: st → se and
se → sd, where each polynomial is parameterized to the time
variable t in each dimension out of x, y, z and yaw. The
2-segment trajectory of one dimension can be written as:



Fig. 5. The prototype of our drone platform

Dµ(t) =
{ ∑n

j=0 p1j(t− t0)j t ∈ [t0, t1] st → se∑n
j=0 p2j(t− t1)j t ∈ [t1, t2] se → sd,

(8)
where pj is the jth order polynomial coefficient of the

trajectory. t1 and t2 are the end time of each trajectory, with
the total time of 4t = t2 − t0, which is calculated by the
segment length, maximum velocity and acceleration based
on the trapezoidal acceleration profile [34].

Instead of formulating the objective function for each
dimension as in [35], in this paper, the coefficients in all
the x, y, z and yaw dimensions are coupled into one single
equation:

J =
∑

µ∈{x,y,z,yaw}

∫ T

0

(
d4fµ(t)

dt4

)2

dt. (9)

Finally, we re-plan the trajectory by solving the objective
function minimization Eq. 9 in real-time. The drone executes
filming footage along the trajectory.

In practice, we need to check maximum velocity and
acceleration of the trajectory to ensure dynamical feasibility.
If the acceleration or velocity of trajectory exceeds the
maximum value, we extend the flight time4t and recalculate
Eq. 9 to get a new trajectory. Then check the feasibility
of the trajectory until that it meets the requirement. For
simplification, we only check the trajectory at most five
iterations and extend the time 4t by 1.2 times each iteration.
The maximum acceleration and velocity is set as 2.5m/s2

and 1.5m/s. If the trajectory is still infeasible after five
iterations, we do not move the camera. In most cases, we
can solve a feasible trajectory at most two iterations.

VII. SYSTEM ARCHITECTURE

We integrate two processors and a gimbal camera into
a DJI Matrix 100, as Fig. 5 shows. We use DJI Guidance
System to provide positioning information. We choose a
powerful GPU Jetson TX2 to run shot feature extraction.
Meanwhile, we use DJI’s Mainifold (customized Jetson TK1)
to decode the video of the onboard gimbal camera and to
communicate with DJI Guidance System. As a result, we
use a combination of one TX2 and one Manifold to run the
entire system simultaneously. The TX2 is equipped with a
quad-core ARM Cortex-A57 processor, a dual-core Denver2

processor and 8 GB memory. The 256 GPU cores on the TX2
make it particularly suitable for parallel computing of body
keypoints detection. Compared with TX2, Manifold is less
powerful and it is equipped with a quad-core ARM Cortex-
A15 processor, 2 GB memory and 192 GPU cores. We use
a Zenmuse X3 Gimbal Camera to capture stabilized footage.
To achieve real-time performance, each frame is resized to
304x176 before further processing.

We deploy different modules to two processors based on
their computation complexity. Table I shows the runtime of
different modules for each frame. More precisely, the TX2 is
dedicated for shot feature extraction, and the DJI Manifold
covers the viewpoint prediction and camera planning. Both
processors are powered by the battery of the DJI Matrix 100
and are connected using an Ethernet cable. Communication
between two computers is done by utilizing the ROS infras-
tructure. Meanwhile, the user utilizes the user interface on
the ground PC to design the shot and send it to the drone
using Wi-Fi.

TABLE I
RUNTIME OF DIFFERENT MODULES

GPU Module Runtime (ms)
TX2 Shot Feature Extraction 218.47

Manifold Viewpoint Prediction 22.43
Gimbal/Drone Body Control 17.36

VIII. EXPERIMENTS

In this section, we conduct quantitative and qualitative
experiments to evaluate our method. These experiments are
designed to answer the following questions:

A. Does the predictive model learn the filming skills from
the professional videos?

Experiment: We train two learning networks with the
professional videos from gettyimages.com and the random
single-subject videos from Youtube. We keep the same
amount of training data (200 videos) and compare the
prediction error of the test videos from gettyimages.com.

TABLE II
THE PREDICTION ERROR OF THE SCREEN POSITION AND RELATIVE

CAMERA POSITION

Training Data Screen Position Relative Camera Position
(pixel) (m)

Professionals 11 0.33
Random 16 0.59

Result: Tab. II compares the prediction error of two models
trained from different datasets. The screen positions and
the relative camera positions predicted from the professional
videos are more accurate than those from random videos. The



Fig. 6. (A, C) The snapshots of two footages captured by our drone system. (B, D) The framing objectives given by users in the User Interface.

Fig. 7. Left: The possibility of collision decreases with the increasing
training data. Right: The drone can pass by the subject in the test phase.

predicted results are related to not only the previous inputs
but also the memory of the training data in the network. We
can draw the conclusion that the predictive model does learn
the filming skills from the professional videos.

B. Is the drone system capable of avoiding collision with the
subject?

Experiment: We export one human model from the CMU
motion capture dataset [36] to the simulation. Given the
random user’s input and the initial position of the drone, we
count the collision times along with the increasing training
data. We model the avoided region (see the red sphere in
Fig. 7 (right)) using a sphere around the subject (2 m). If
the drone intrudes into the avoided region, we consider it
to be a collision. We test 100 times for each set of training
data.

Result: Fig. 7 (left) shows that the possibility of collision
decreases with the increasing training data. This can be ex-
plained by the fact that the training video implicitly includes
the information of keeping the safety distance. Inspired by
[37], we believe that the drone system can be more robust in
avoiding collisions if we feed in more training video captured
in different conditions.

C. What are the benefits of learning?

Experiment: We utilize the user study to analyze the
benefits of learning via two experiments: 1) comparing the
quality of the footage captured by beginners with versus
without the assistance of our system, and 2) comparing the
footages captured manually by experts and by beginners with

the assistance of our system. We recruited 5 novice volun-
teers with no prior knowledge of cinematography nor drone
piloting experience, and 5 volunteers with aerial filming
experience. Each participant is required to capture 2 pieces
of video clips with and without using our system, and then
each one is assigned a questionnaire to score (from 1 (worst)
to 5 (best)) the quality of all the video clips.

TABLE III
THE USER STUDY FOR BENEFITS OF LEARNING

Manual Filming Automatic Filming Manual Filming
by Beginners by Beginners by Experts
1.71± 1.29 4.25± 0.53 4.11± 0.82

Result: The experimental result among beginners shows
that the scores (4.25 ± 0.53) for the footage captured with
our system are higher than for the footage captured manually
(1.71±1.29). In the second experiment, the footage captured
by the beginners with the assistance of our system is close
to that filmed by the experts, which demonstrates that our
system does successfully mimic a professional cameraman.

Fig. 6 illustrates two sequences of snapshots of the video
(A and C) and two framing objectives (B and D) given
by users in the UI. The end frame (t=9 s) is consistent
with the user’s inputs. The attached videos demonstrate
that our system achieves film-look footage and successfully
mimics a professional cameraman. More comparison results
are demonstrated in our demo video.

IX. CONCLUSIONS

In this paper, we proposed a novel autonomous drone
filming based on imitation learning. Our system allows the
user to customize the camera viewpoint, and later create a
cinematic footage that connects the desired viewpoint. We
divided this task into two steps: 1) we used supervised learn-
ing techniques to train a network to predict the shot framing
in the next timestep, and 2) our system generates control
commands to move the drone and gimbal to achieve the
predicted shot framing. Our experimental results demonstrate
the effectiveness of our system for assisting pilot beginners
to capture film-look footage.



REFERENCES

[1] J. Chen, H. M. Le, P. Carr, Y. Yue, and J. J. Little, “Learning
online smooth predictors for realtime camera planning using recurrent
decision trees,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4688–4696.

[2] J. Chen and P. Carr, “Mimicking human camera operators,” in Appli-
cations of Computer Vision (WACV), 2015 IEEE Winter Conference
on. IEEE, 2015, pp. 215–222.

[3] H.-N. Hu, Y.-C. Lin, M.-Y. Liu, H.-T. Cheng, Y.-J. Chang, and M. Sun,
“Deep 360 pilot: Learning a deep agent for piloting through 360 sports
video,” in CVPR, vol. 1, no. 2, 2017, p. 3.

[4] Y. Luo and X. Tang, “Photo and video quality evaluation: Focusing on
the subject,” in European Conference on Computer Vision. Springer,
2008, pp. 386–399.

[5] S. Chung, J. Sammartino, J. Bai, and B. A. Barsky, “Can motion
features inform video aesthetic preferences,” University of California
at Berkeley Technical Report No. UCB/EECS-2012-172June, vol. 29,
2012.

[6] Y. Wang, Q. Dai, R. Feng, and Y.-G. Jiang, “Beauty is here: evaluating
aesthetics in videos using multimodal features and free training
data,” in Proceedings of the 21st ACM international conference on
Multimedia. ACM, 2013, pp. 369–372.

[7] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[8] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[9] D. Arijon, Grammar of the film language. Focal Press London, 1976.
[10] dji, https://www.dji.com/manifold/, 2017.
[11] nvidia, https://developer.nvidia.com/embedded/buy/jetson-tx2/, 2017.
[12] dji, https://www.dji.com/matrice100/, 2015.
[13] ——, https://store.dji.com/guides/film-like-a-pro-with-activetrack/,

2015.
[14] ——, https://www.drone-world.com/dji-mavic-air-quickshot-modes/,

2018.
[15] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges,

“Real-time motion planning for aerial videography with dynamic
obstacle avoidance and viewpoint optimization,” vol. 2, no. 3, pp.
1696–1703, 2017.

[16] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges,
“Real-time planning for automated multi-view drone cinematography,”
ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 132, 2017.

[17] Q. Galvane, J. Fleureau, F.-L. Tariolle, and P. Guillotel, “Automated
cinematography with unmanned aerial vehicles,” In Proceedings of the
Eurographics Workshop on Intelligent Cinematography and Editing,
2016.

[18] Q. Galvane, C. Lino, M. Christie, J. Fleureau, F. Servant, F. Tariolle,
P. Guillotel, et al., “Directing cinematographic drones,” ACM Trans-
actions on Graphics (TOG), vol. 37, no. 3, p. 34, 2018.

[19] N. Joubert, D. B. Goldman, F. Berthouzoz, M. Roberts, J. A. Landay,
P. Hanrahan, et al., “Towards a drone cinematographer: Guiding
quadrotor cameras using visual composition principles,” arXiv preprint
arXiv:1610.01691, 2016.

[20] H. Kang, H. Li, J. Zhang, X. Lu, and B. Benes, “Flycam: Multi-
touch gesture controlled drone gimbal photography,” IEEE Robotics
and Automation Letters, 2018.

[21] C. Huang, Z. Yang, Y. Kong, P. Chen, X. Yang, and K.-T. T. Cheng,
“Through-the-lens drone filming,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 4692–4699.

[22] C. Huang, F. Gao, J. Pan, Z. Yang, W. Qiu, P. Chen, X. Yang, S. Shen,
and K.-T. T. Cheng, “Act: An autonomous drone cinematography
system for action scenes,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 7039–7046.

[23] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-
person 2d pose estimation using part affinity fields,” arXiv preprint
arXiv:1611.08050, 2016.

[24] M. R. I. Hossain and J. J. Little, “Exploiting temporal information for
3d pose estimation,” arXiv preprint arXiv:1711.08585, 2017.

[25] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-
P. Seidel, W. Xu, D. Casas, and C. Theobalt, “Vnect: Real-time 3d
human pose estimation with a single rgb camera,” ACM Transactions
on Graphics (TOG), vol. 36, no. 4, p. 44, 2017.

[26] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu,
and C. Theobalt, “Monocular 3d human pose estimation in the wild
using improved cnn supervision,” in 3D Vision (3DV), 2017 Fifth
International Conference on, 2017.

[27] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[28] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder-decoder ap-
proaches,” arXiv preprint arXiv:1409.1259, 2014.

[29] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[30] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[33] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[34] T. Kröger and F. M. Wahl, “Online trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events,” IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 94–111, 2010.

[35] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011, pp. 2520–2525.

[36] cmu, http://mocap.cs.cmu.edu/, 2009.
[37] A. Loquercio, A. I. Maqueda, C. R. del Blanco, and D. Scaramuzza,

“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

https://www.dji.com/manifold/
https://developer.nvidia.com/embedded/buy/jetson-tx2/
https://www.dji.com/matrice100/
https://store.dji.com/guides/film-like-a-pro-with-activetrack/
https://www.drone-world.com/dji-mavic-air-quickshot-modes/
 http://mocap.cs.cmu.edu/

	INTRODUCTION
	Related Work
	Preliminary
	Coordinates Definition
	Shot Definition

	Problem Definition
	Training
	Data Collection
	Shot Feature Extraction
	Training Data Generation
	Learning Network

	Testing
	Gimbal Control
	Drone Body Control

	System Architecture
	Experiments
	 Does the predictive model learn the filming skills from the professional videos?
	Is the drone system capable of avoiding collision with the subject?
	What are the benefits of learning?

	Conclusions
	References

